91 research outputs found

    Atomic cluster expansion force field based thermal property material design with density functional theory level accuracy in non-equilibrium molecular dynamics calculations over sub-million atoms

    Full text link
    Non-equilibrium molecular dynamics (NEMD) techniques are widely used for investigating lattice thermal conductivity. Recently, machine learning force fields (MLFFs) have emerged as a promising approach to enhance the precision in NEMD simulations. This study is aimed at demonstrating the potential of MLFFs in realizing NEMD calculations for large-scale systems containing over 100,000 atoms with density functional theory (DFT)-level accuracy. Specifically, the atomic cluster expansion (ACE) force field is employed, using Si as an example. The ACE potential incorporates 4-body interactions and features a training dataset consisting of 1000 order structures from first-principles molecular dynamics calculations, resulting in a highly accurate vibrational spectrum. Moreover, the ACE potential can reproduce thermal conductivity values comparable with those derived from DFT calculations via the Boltzmann equation. To demonstrate the application of MLFFs to systems containing over 100,000 atoms, NEMD simulations are conducted on thin films ranging from 100 nm to 500 nm, with the 100 nm films exhibiting defect rates of up to 1.5%. The results show that the thermal conductivity deviates by less than 5% from DFT or theoretical results in both scenarios, which highlights the ability of the ACE potential in calculating the thermal conductivity on a large scale with DFT-level accuracy. The proposed approach is expected to promote the application of MLFFs in various fields and serve as a feasible alternative to virtual experiments. Furthermore, this work demonstrates the potential of MLFFs in enhancing the accuracy of NEMD simulations for investigating lattice thermal conductivity for systems with over 100,000 atoms.Comment: 24 pages including with supporting infomatio

    Robustness of MEK-ERK Dynamics and Origins of Cell-to-Cell Variability in MAPK Signaling.

    Get PDF
    Cellular signaling processes can exhibit pronounced cell-to-cell variability in genetically identical cells. This affects how individual cells respond differentially to the same environmental stimulus. However, the origins of cell-to-cell variability in cellular signaling systems remain poorly understood. Here, we measure the dynamics of phosphorylated MEK and ERK across cell populations and quantify the levels of population heterogeneity over time using high-throughput image cytometry. We use a statistical modeling framework to show that extrinsic noise, particularly that from upstream MEK, is the dominant factor causing cell-to-cell variability in ERK phosphorylation, rather than stochasticity in the phosphorylation/dephosphorylation of ERK. We furthermore show that without extrinsic noise in the core module, variable (including noisy) signals would be faithfully reproduced downstream, but the within-module extrinsic variability distorts these signals and leads to a drastic reduction in the mutual information between incoming signal and ERK activity

    AtNFXL1, an Arabidopsis homologue of the human transcription factor NF-X1, functions as a negative regulator of the trichothecene phytotoxin-induced defense response

    Get PDF
    金沢大学学際科学実験センター遺伝子研究施設Trichothecenes are a closely related family of phytotoxins that are produced by phytopathogenic fungi. In Arabidopsis, expression of AtNFXL1, a homologue of the putative human transcription repressor NF-X1, was significantly induced by application of type A trichothecenes, such as T-2 toxin. An atnfxl1 mutant growing on medium lacking trichothecenes showed no phenotype, whereas a hypersensitivity phenotype was observed in T-2 toxin-treated atnfxl1 mutant plants. Microarray analysis indicated that several defense-related genes (i.e. WRKYs, NBS-LRRs, EDS5, ICS1, etc.) were upregulated in T-2 toxin-treated atnfxl1 mutants compared with wild-type plants. In addition, enhanced salicylic acid (SA) accumulation was observed in T-2 toxin-treated atnfxl1 mutants, which suggests that AtNFXL1 functions as a negative regulator of these defense-related genes via an SA-dependent signaling pathway. We also found that expression of AtNFXL1 was induced by SA and flg22 treatment. Moreover, the atnfxl1 mutant was less susceptible to a compatible phytopathogen, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000). Taken together, these results indicate that AtNFXL1 plays an important role in the trichothecene response, as well as the general defense response in Arabidopsis. © 2007 The Authors

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020)

    Get PDF
    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.other authors: Satoru Hashimoto,Daisuke Hasegawa,Junji Hatakeyama,Naoki Hara,Naoki Higashibeppu,Nana Furushima,Hirotaka Furusono,Yujiro Matsuishi,Tasuku Matsuyama,Yusuke Minematsu,Ryoichi Miyashita,Yuji Miyatake,Megumi Moriyasu,Toru Yamada,Hiroyuki Yamada,Ryo Yamamoto,Takeshi Yoshida,Yuhei Yoshida,Jumpei Yoshimura,Ryuichi Yotsumoto,Hiroshi Yonekura,Takeshi Wada,Eizo Watanabe,Makoto Aoki,Hideki Asai,Takakuni Abe,Yutaka Igarashi,Naoya Iguchi,Masami Ishikawa,Go Ishimaru,Shutaro Isokawa,Ryuta Itakura,Hisashi Imahase,Haruki Imura,Takashi Irinoda,Kenji Uehara,Noritaka Ushio,Takeshi Umegaki,Yuko Egawa,Yuki Enomoto,Kohei Ota,Yoshifumi Ohchi,Takanori Ohno,Hiroyuki Ohbe,Kazuyuki Oka,Nobunaga Okada,Yohei Okada,Hiromu Okano,Jun Okamoto,Hiroshi Okuda,Takayuki Ogura,Yu Onodera,Yuhta Oyama,Motoshi Kainuma,Eisuke Kako,Masahiro Kashiura,Hiromi Kato,Akihiro Kanaya,Tadashi Kaneko,Keita Kanehata,Ken-ichi Kano,Hiroyuki Kawano,Kazuya Kikutani,Hitoshi Kikuchi,Takahiro Kido,Sho Kimura,Hiroyuki Koami,Daisuke Kobashi,Iwao Saiki,Masahito Sakai,Ayaka Sakamoto,Tetsuya Sato,Yasuhiro Shiga,Manabu Shimoto,Shinya Shimoyama,Tomohisa Shoko,Yoh Sugawara,Atsunori Sugita,Satoshi Suzuki,Yuji Suzuki,Tomohiro Suhara,Kenji Sonota,Shuhei Takauji,Kohei Takashima,Sho Takahashi,Yoko Takahashi,Jun Takeshita,Yuuki Tanaka,Akihito Tampo,Taichiro Tsunoyama,Kenichi Tetsuhara,Kentaro Tokunaga,Yoshihiro Tomioka,Kentaro Tomita,Naoki Tominaga,Mitsunobu Toyosaki,Yukitoshi Toyoda,Hiromichi Naito,Isao Nagata,Tadashi Nagato,Yoshimi Nakamura,Yuki Nakamori,Isao Nahara,Hiromu Naraba,Chihiro Narita,Norihiro Nishioka,Tomoya Nishimura,Kei Nishiyama,Tomohisa Nomura,Taiki Haga,Yoshihiro Hagiwara,Katsuhiko Hashimoto,Takeshi Hatachi,Toshiaki Hamasaki,Takuya Hayashi,Minoru Hayashi,Atsuki Hayamizu,Go Haraguchi,Yohei Hirano,Ryo Fujii,Motoki Fujita,Naoyuki Fujimura,Hiraku Funakoshi,Masahito Horiguchi,Jun Maki,Naohisa Masunaga,Yosuke Matsumura,Takuya Mayumi,Keisuke Minami,Yuya Miyazaki,Kazuyuki Miyamoto,Teppei Murata,Machi Yanai,Takao Yano,Kohei Yamada,Naoki Yamada,Tomonori Yamamoto,Shodai Yoshihiro,Hiroshi Tanaka,Osamu NishidaGuideline

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020)

    Get PDF
    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.other authors: Yasuhiro Norisue, Satoru Hashimoto, Daisuke Hasegawa, Junji Hatakeyama, Naoki Hara, Naoki Higashibeppu, Nana Furushima, Hirotaka Furusono, Yujiro Matsuishi, Tasuku Matsuyama, Yusuke Minematsu, Ryoichi Miyashita, Yuji Miyatake, Megumi Moriyasu, Toru Yamada, Hiroyuki Yamada, Ryo Yamamoto, Takeshi Yoshida, Yuhei Yoshida, Jumpei Yoshimura, Ryuichi Yotsumoto, Hiroshi Yonekura, Takeshi Wada, Eizo Watanabe, Makoto Aoki, Hideki Asai, Takakuni Abe, Yutaka Igarashi, Naoya Iguchi, Masami Ishikawa, Go Ishimaru, Shutaro Isokawa, Ryuta Itakura, Hisashi Imahase, Haruki Imura, Takashi Irinoda, Kenji Uehara, Noritaka Ushio, Takeshi Umegaki, Yuko Egawa, Yuki Enomoto, Kohei Ota, Yoshifumi Ohchi, Takanori Ohno, Hiroyuki Ohbe, Kazuyuki Oka, Nobunaga Okada, Yohei Okada, Hiromu Okano, Jun Okamoto, Hiroshi Okuda, Takayuki Ogura, Yu Onodera, Yuhta Oyama, Motoshi Kainuma, Eisuke Kako, Masahiro Kashiura, Hiromi Kato, Akihiro Kanaya, Tadashi Kaneko, Keita Kanehata, Ken-ichi Kano, Hiroyuki Kawano, Kazuya Kikutani, Hitoshi Kikuchi, Takahiro Kido, Sho Kimura, Hiroyuki Koami, Daisuke Kobashi, Iwao Saiki, Masahito Sakai, Ayaka Sakamoto, Tetsuya Sato, Yasuhiro Shiga, Manabu Shimoto, Shinya Shimoyama, Tomohisa Shoko, Yoh Sugawara, Atsunori Sugita, Satoshi Suzuki, Yuji Suzuki, Tomohiro Suhara, Kenji Sonota, Shuhei Takauji, Kohei Takashima, Sho Takahashi, Yoko Takahashi, Jun Takeshita, Yuuki Tanaka, Akihito Tampo, Taichiro Tsunoyama, Kenichi Tetsuhara, Kentaro Tokunaga, Yoshihiro Tomioka, Kentaro Tomita, Naoki Tominaga, Mitsunobu Toyosaki, Yukitoshi Toyoda, Hiromichi Naito, Isao Nagata, Tadashi Nagato, Yoshimi Nakamura, Yuki Nakamori, Isao Nahara, Hiromu Naraba, Chihiro Narita, Norihiro Nishioka, Tomoya Nishimura, Kei Nishiyama, Tomohisa Nomura, Taiki Haga, Yoshihiro Hagiwara, Katsuhiko Hashimoto, Takeshi Hatachi, Toshiaki Hamasaki, Takuya Hayashi, Minoru Hayashi, Atsuki Hayamizu, Go Haraguchi, Yohei Hirano, Ryo Fujii, Motoki Fujita, Naoyuki Fujimura, Hiraku Funakoshi, Masahito Horiguchi, Jun Maki, Naohisa Masunaga, Yosuke Matsumura, Takuya Mayumi, Keisuke Minami, Yuya Miyazaki, Kazuyuki Miyamoto, Teppei Murata, Machi Yanai, Takao Yano, Kohei Yamada, Naoki Yamada, Tomonori Yamamoto, Shodai Yoshihiro, Hiroshi Tanaka & Osamu Nishid

    Application of Quantum Cryptography to an Eavesdropping Detectable Data Transmission

    No full text
    corecore